Advertisement

nature

Explore content ¥ Journal information ¥ Publish with us v

View all journals

Search Q Login @

Sign up for alerts L) RSS feed

nature > articles > article

Article | Published: 09 June 2021
A graph placement methodology for fast chip design

Azalia Mirhoseini &, Anna Goldie B, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen Wang,
Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, Jiwoo Pak, Andy Tong, Kavya Srinivasa, William

Hang, Emre Tuncer, Quoc V. Le, James Laudon, Richard Ho, Roger Carpenter & Jeff Dean

MNature 594, 207-212 (2021) | Cite this article

8490 Accesses | 1 Citations | 1342 Altmetric | Metrics

Abstract

Chip floorplanning is the engineering task of designing the physical layout of a computer
chip. Despite five decades of research!, chip floorplanning has defied automation, requiring
months of intense effort by physical design engineers to produce manufacturable layouts.
Here we present a deep reinforcement learning approach to chip floorplanning. In under six
hours, our method automatically generates chip floorplans that are superior or comparable
to those produced by humans in all key metrics, including power consumption,
performance and chip area. To achieve this, we pose chip floorplanning as a

reinforcement learning problem, and develop an edge-based graph convolutional neural
network architecture capable of learning rich and transferable representations of the chip.
As aresult, our method utilizes past experience to become better and faster at solving new
instances of the problem, allowing chip design to be performed by artificial agents with
more experience than any human designer. Our method was used to design the next
generation of Google’s artificial intelligence (Al) accelerators, and has the potential to save
thousands of hours of human effort for each new generation. Finally, we believe that more
powerful Al-designed hardware will fuel advancesin Al, creating a symbiotic relationship
between the two fields.

Main

In this work, we propose a new graph placement method based on reinforcementlearning
(RL), and demonstrate state-of-the-art results on chip floorplanning, a challenging problem?
that has long defied automation, despite five decades of research. Our method generates
manufacturable chip floorplans in under 6 h, compared to the strongest baseline, which

requires months of intense effort by human experts.

A computer chip is divided into dozens of blocks, each of which is an individual module,
such as amemory subsystem, compute unit or control logic system. These blocks can be
described by a netlist, a hypergraph of circuit components, such as macros (memory
components) and standard cells (logic gates such as NAND, NOR and XOR), all of which are
connected by wires. Chip floorplanning involves placing netlists onto chip canvases (two-
dimensional grids) so that performance metrics (for example, power consumption, timing,
area and wirelength) are optimized, while adhering to hard constraints on density and
routing congestion.

Since the 1960s, many approaches to chip floorplanning have been proposed, falling into

You have full access to this article via Specialized
Presidential Council for Educ and Scientific

Research Portal

Download PDF

Associated Content

e

Al system outperforms humansin
designing floorplans for microchips

Andrew B. Kahng

Nature News & Views | 09 Jun 2021

Sections

Abstract
Main
Methods

Data availability

Figures

Advertisement

References

three broad categories: partitioning-based methods®*3, stochastic/hill-climbing
approaches®”® and analytic solvers” 011121314 However, none of these approaches could
achieve human-level performance, and the exponential growth in chip complexity has

rendered these techniques largely unusable on modern chips.

The limitations of these prior approaches are varied. For example, partitioning-based
methods sacrifice the quality of the global solution in order to scale to larger netlists, and a
poor early partition may result in an unsalvageable final result. Hill-climbing approaches
have low convergence rates and do not scale to modern chip netlists, which have millions or
billions of nodes®. Prior to this work, analytic solvers were the leading approach, but they
can only optimize for differentiable loss functions, meaning that they cannot effectively
optimize for critical metrics, such as routing congestion or timing violations. Our method,
on the other hand, can scale to netlists with millions of nodes, and optimizes directly for any
mixture of differentiable or non-differentiable cost functions. Furthermore, our method
improves in both speed and quality of result because it is exposed to more instances of the
chip placement problem.

Owing to the limitations of these prior methods, human physical designers must iterate for
months with commercial electronic design automation (EDA) tools, taking as input a
register transfer level (RTL) description of the chip netlist, generating a manual placement
of that netlist onto the chip canvas, and waiting up to 72 h for EDA tools to evaluate that
placement. On the basis of this feedback, the human designer either concludes that the
design criteria have been achieved, generates an updated floorplan for evaluation, or
provides feedback to upstream RTL designers, who then modify the low-level code to make

the placement task easier (for example, resolve timing violations).

To address the chip floorplanning problem, we developed an RL method capable of
generalizing across chips—meaning that it can learn from experience to become both better
and faster at placing new chips—allowing chip designers to be assisted by artificial agents

with more experience than any human could ever gain.

Training placement policies that generalize across chips is extremely challenging, because it
requires learning to optimize the placement of all possible chip netlists onto all possible
canvases. Chip floorplanning is analogous to a game with varying pieces (for example,
netlist topologies, macro counts, macro sizes and aspect ratios), boards (varying canvas
sizes and aspect ratios) and win conditions (relative importance of different evaluation
metrics or different density and routing congestion constraints). Even one instance of this
game (placing a particular netlist onto a particular canvas) has an enormous state-action
space. For example, the state space of placing 1,000 clusters of nodes on a grid with 1,000
cells is of the order 0f 1,000! (greater than 102590) whereas Go has a state space of 10769

(ref.15),

To enable generalization, we focused on learning transferable representations of chips,
grounding representation learning in the supervised task of predicting placement quality.
By designing a neural architecture that can accurately predict reward across a wide variety
of netlists and their placements, we are able to generate rich feature embeddings of the
input netlists. We then use this architecture as the encoder of our policy and value networks
to enable transfer learning. In our experiments, we show that, as our agentis exposedtoa
greater volume and variety of chips, it becomes both faster and better at generating
optimized placements for new chip blocks, bringing us closer to a future in which chip

designers are assisted by artificial agents with vast chip placement experience.

In addition to the immediate impact on chip floorplanning, the ability of our method to
generalize and quickly generate high-quality solutions has major implications, unlocking
opportunities for co-optimization with earlier stages of the chip design process. Large-scale
architectural explorations were previously impossible, because it took months of human

effort to accurately evaluate a given architectural candidate. However, modifying the

architectural design can have an outsized impact on performance, and would facilitate full
automartion of the chip design process. Automating and accelerating the chip design
process can also enable co-design of Al and hardware, yielding high-performance chips
customized to important workloads, such as autonomous vehicles, medical devices and

data centres.

At an abstract level, our method learns to map the nodes of a hypergraph onto a limited set
of resources, subject to constraints. Placement optimizations of this form appear in a wide
range of science and engineering applications, including hardware design’, city planning!®,
vaccine testing and distribution", and cerebral cortex layout'®. Therefore, we believe that
our placement optimization methodology can be applied to impactful placement problems

beyond chip design.

Beyond the experimental results reported here, our method is already having real-world
impact, and our floorplan solutions are in the product tapeout of a recent-generation
Google tensor processing unit (TPU) accelerator.

Chip floorplanning as a learning problem

The underlying problem is a high-dimensional contextual bandits problem!® but, as in prior

20,21.22.23 \we have chosen to reformulate it as a sequential Markov

work, such as refs.
decision process (MDP), because this allows us to more easily incorporate the problem

constraints as described below. Our MDP consists of four key elements:

(1) States encode information about the partial placement, including the netlist (adjacency
matrix), node features (width, height, type), edge features (number of connections), current
node (macro) to be placed, and metadata of the netlist graph (routing allocations, total

number of wires, macros and standard cell clusters).

(2) Actionsare all possible locations (grid cells of the chip canvas) onto which the current
macro can be placed without violating any hard constraints on density or blockages.

(3) State transitions define the probability distribution over next states, given a state and an
action.

(4) Rewards are O for all actions except the last action, where the reward is a negative

weighted sum of proxy wirelength, congestion and density, as described below.

We train a policy (an RL agent) modelled by a neural network that, through repeated
episodes (sequences of states, actions and rewards), learns to take actions that will
maximize cumulative reward (see Fig. 1). We use proximal policy optimization (PPO)%* to
update the parameters of the policy network, given the cumulative reward for each
placement.

Fig. 1: Overview of our method and training regimen.

Force-directed method places

RL agent places macros one at a time
Chip SRR standard cell

canvas rp = -Wirelength
=0

=0 a, i -4 x congestion
D

a =0 . :
Nelele S lie
54 S, sy

S

In each training iteration, the RL agent places macros one at a time (actions, states and rewards are
denoted by a;, s;and r;, respectively). Once all macros are placed, the standard cells are placed using
a force-directed method. The intermediate rewards are zero. The reward at the end of each iteration
is calculated as a linear combination of the approximate wirelength, congestion and density, and is
provided as feedback to the agent to optimize its parameters for the next iteration.

Full size image >

We can formally define the objective function as follows:
1
J0,6) = 2 D Bogers [Bpg)- o)
g=G

Here /(0, G) is the cost function. The agent is parameterized by 6. The dataset of netlists of
size Kis denoted by G, with each individual netlist in the dataset written as g. R g is the
episode reward of a placement p drawn from the policy network applied to netlist g.

Eg plRy ¢l is the expected reward, given a netlist g and placement p drawn from the policy

distribution mg.
R, , = —Wirelength(p, g) — ACongestion(p, g) — yDensity(p, g). 2)

In each iteration, the RL agent (policy network) sequentially places the macros. Once all
macros are placed, we use aforce-directed method!2>26-27 tg approximately place clusters
of standard cells. The reward at the end of each iteration is calculated as a linear
combination of the approximate wirelength, congestion and density (equation (2)). In our
experiments, the congestion weight Ais set to 0.01, the density weight yis set to 0.01 and the

maximum density threshold is set to 0.6.

Designing domain-adaptive policies

As mentioned earlier, developing domain-adaptive policies for the chip floorplanning
problem is extremely challenging, because this problem is analogous to a game with varying
pieces, boards and win conditions, and has an enormous state-action space. To address this
challenge, we first focused on learning rich representations of the state space. Our intuition
was that a policy capable of the general task of chip placement should also be able to encode
the state associated with a new unseen chip into a meaningful signal at inference time. We
therefore trained a neural network architecture capable of predicting reward on placements
of new netlists, with the ultimate goal of using this architecture as the encoder layer of our

policy.

To train this supervised model, we needed a large dataset of chip placements and their
corresponding reward labels. We therefore created a dataset of 10,000 chip placements
where the input is the state associated with a given placement and the label is the reward for

that placement.

To accurately predict the reward labels and generalize to unseen data, we developed an
edge-based graph neural network architecture, which we call Edge-GNN (Edge-Based Graph
Neural Network). The role of this network is to embed the netlist, distilling information
about the type and connectivity of nodes into a low-dimensional vector representation that
can be used in downstream tasks. The impact of our edge-based neural architecture on
generalization is shown in Extended Data Fig. 2.

In Edge-GNN, we create an initial representation of each node by concatenating its features—
including node type, width, height, x and y coordinates, and its connectivity to other nodes.
We theniteratively perform the following updates: (1) each edge updates its representation
by applying a fully connected network to a concatenation of the two nodes that it connects,
and (2) each node updates its representation by passing the mean of all in- and outgoing
edges into another fully connected network. The node and edge updates are shown in

equation (3).

ei; = fce(concat(vi|vj|ws;)), -

U; = IMealjeNeighbours(v;) (eij)'

Node embeddings are denoted by v;for 1<i< N, where Nis the total number of macros and

standard cell clusters. Vector representations of edges connecting nodes v; and v;are

denoted as ¢;;. fc, indicates a fully connected layer and w;?j corresponds to the learnable
weight applied to edge e;; (which connects nodesi and). The outputs of the algorithm are

the node and edge embeddings.

The supervised model is trained via regression to minimize the weighted sum of mean
squared loss (negative reward). This supervised task allowed us to find the features and
architecture necessary to generalize reward prediction across netlists. To incorporate Edge-
GNN into our RL policy network, we removed the prediction layer and then used it as the

encoder of the policy network, as shown in Fig. 2.

Fig. 2: Policy and value network architecture.

Feature embeddings Policy and vakus networks

2 3 04
n corw Gizgh i G t6xn 4
N Geaph cor L e ﬁ:;t:ﬁ. | ambeciang o Bx8x16 -
ey f
- \ jetE= =l H- = |- T B &
Matst et o f \ 4
gaph | S wew e
oo B ¥ o

Curvent Currert macro | I

macr emiedding | | Policy netwerk u.-/
H— r Valug network

= Hetiat
sacat =
e L - | metacista

ombedang =

An embedding layer encodes information about the netlist adjacency, node features and the
current macro to be placed. The policy and value networks then output a probability distribution
over available grid cells and an estimate of the expected reward for the current placement,

respectively. id, identification number; fc, fully connected layer; de-conv, deconvolution layer.

Full size image >

To place a new netlist at inference time, we load the pre-trained weights of the policy
network and apply it to the new netlist. We refer to placements generated by a pre-trained
policy with no fine-tuning as zero-shot placements. Such a placement can be generated in
subsecond times, because it requires only a single forward pass through the pre-trained
policy for each macro. We can further optimize placement quality by fine-tuning the policy
network. Doing so gives us the flexibility to either use the pre-trained weights (which have
learned a rich representation of the input state) or further fine-tune these weights to

optimize for the properties of a particular chip netlist.

Figure 1shows an overview of the proposed policy network (modelled by Ty in equation (1))
and value network architectures. The input is the netlist hypergraph (represented as an
adjacency matrix and list of node features), the identity of the current node to be placed, the
metadata of the netlist, and the process technology node (for example, 7 nm). The netlist is
fed into our Edge-GNN architecture to generate embeddings of the partially placed netlist
and of the current node. We use a feed-forward network to embed the metadata. These
embedding vectors are then concatenated to form the state embedding, which is passed to
another feed-forward neural network to generate a final representation of the state. This
state is then fed into the policy network (composed of five deconvolutions, batch
normalization?® and rectified linear unit (ReLU) activation layers?®) to generate a probability
distribution over actions and into a value network (composed of a feed-forward network) to
predict the value of the input state. The deconvolution layers have a kernel size of 3x 3, a
stride of 2, and 16, 8, 4, 2 and 1 filter channels.

Empirical evaluation

In this section, we evaluate the ability of our method to generalize, explore the impact of
using pre-trained policies and compare our method to state-of-the-art baselines. We also
inspect the visual appearance of generated placements and provide insights into the

behaviour of our policy.

In terms of resource usage, for pre-training we used the same number of workers as blocks
in the training dataset (for example, for the largest training set with 20 blocks, we pre-
trained with 20 workers) and the pre-training runtime was 48 h. To generate the fine-tuning
results in Table 1, our method ran on 16 workers for up to 6 h, but the runtime was often
considerably lower owing to early stopping. For both pre-training and fine-tuning, a worker
consists of an Nvidia Volta graphics processing unit (GPU) and 10 central processing units
(CPUs), each with 2 GB of RAM. For the zero-shot mode (applying a pre-trained policy to a
new netlist with no fine-tuning), we can generate a placementin less than a secondona
single GPU.

Table 1 Comparisons against baselines

Full size table ?

Domain adaptation results

Figure 3 compares the quality of placements generated using pre-trained policies to those
generated by training the policy from scratch. The training dataset is composed of blocks of
TPU and of the open-source Ariane RISC-V CPU??, In each experiment, we pre-train the
policy on all blocks except for the target block on which we evaluate. We show results for the
zero-shot mode, as well as after fine-tuning the pre-trained policy on a particular design for
2hand12h.

Fig. 3: Training from scratch versus fine-tuning for varying amounts of time.
Zero-shot: sub-second @ Fine-tuned for 12 h

B Fine-tuned for 2 h B From scratch for 24 h

0.20

0.15 1

0.10 1

0.05 1
0

TPUBlock1 TPUBlock2 TPUBlock3 TPUBlock 4 Ariane RISC-V
CPU

Placement cost

Blocks

For each block, we show zero-shot results, results after fine-tuning for 2 hand 12 h, and results for
policies trained from scratch. As can be seen in the table, the pre-trained policy network
consistently outperforms the policy network trained from scratch, demonstrating the effectiveness
of learning from training data offline.

Full size image >

The policy trained from scratch takes much longer to converge, and even after 24 h the
results (as evaluated by the reward function) are worse than what the fine-tuned policy
achievesin 12 h. This demonstrates that exposure to many different designs during pre-

training enables faster generation of higher-quality placements for new unseen blocks.

Figure 4 shows the convergence plots for training from scratch versus training froma pre-
trained policy network for Ariane RISC-V CPU3Y. Not only does the pre-trained policy start
with a lower placement cost, but it also converges more than 30 h faster than the policy

trained from scratch.

Fig. 4: Convergence plots on Ariane RISC-V CPU.

0.4 = Train policy from scratch = Fine-tune a pre-trained policy
. 0.3
73]
Q
Q
g L\-\\\v‘b‘_w
2 0.2 . —
[+1]
Q
@
o
0.11
0 T T T T
0 10 20 30 40

Training time (h)

Placement cost of training a policy network from scratch versus fine-tuning a pre-trained policy
network fora block of Ariane RISC-V CPU.

Full size image >

Learning from larger datasets

In the following, we explore the impact of the training data on the learning ability of our
policy. TPU chip blocks are quite diverse, and we carefully selected blocks across a
representative range of functionalities (for example, on-chip and inter-chip network blocks,
computation cores, memaory controllers, data transport buffers and logic, and various
interface controllers), saturations (ratio of total area of macros to that of the canvas, <30%,
30-60% and >60%) and macro counts (up to a few hundred). The small training set contains
2 blocks, the medium set contains 5 blocks and the large one contains 20 blocks. As we pre-
train on more chip blocks, we are able to more quickly generate higher quality placements
for new unseen chip blocks. Figure 5 shows the impact of a larger training set on
performance. As we increase the training set from 2 to 5 blocks, and finally to 20 blocks, the
policy network generates better placements both at zero-shot and after being fine-tuned for
the same number of hours. This suggests that as we expose the policy network to a greater
variety of distinct chip designs, it becomes less prone to overfitting and better at

generalizing to new unseen designs.

Fig. 5: Effect of pre-training dataset size.
B Small dataset (2 blocks) B Medium dataset (5 blocks) Large dataset (20 blocks)

0.250
0.225+

0.200

0.175
0.125

Zero-shot Fine-tune Fine-tune Fine-tune Fine-tune
Oh 10h 20h 30h 40 h

Placement cost

We pre-train the policy network on three different training datasets (the small dataset is a subset of
the medium one. and the medium dataset is a subset of the larze one). We then fine-tune this ore-

o

trained policy network on the test block and report cost at various training durations. As the
dataset size increases, both the time to convergence and the quality of generated placements

increase.

Full size image >

Comparing with baseline methods
In this section, we compare our method with the state-of-the-art RePlAce'* and with the
production design of the previous generation of TPU, which was generated by a team of

human physical designers. The results are shown in Table 1.

To perform a fair comparison, we ensured that all methods had the same experimental
setup, including the same inputs and the same EDA tool settings. We note that we ran all of
the evaluations of RePlAce and our method ourselves, but we relied on the TPU physical
design team to share metrics for their best-performing manual placements, and they may
have evaluated with a slightly different EDA version. For more details, see Extended Data
Table 1.

For our method, we use a policy pre-trained on the largest dataset (20 TPU blocks) and then
fine-tune it on five target unseen blocks (denoted as blocks 1-5) for no more than 6 h. For
confidentiality reasons, we cannot disclose the details of these blocks, but each contains up

to a few hundred macros and millions of standard cells.

When evaluating the quality of a chip floorplan, there are several metrics that are important
and that trade off against each other. There is no single metric that can be used to capture
the overall quality of a placement, so we report all key metrics, including the total
wirelength, timing, routing congestion (horizontal and vertical), area and power. Timing is
reported via total negative slack (TNS) and worst negative slack (WNS). Negative slackisa
measure of the extent to which the latency of the signal exceeds the expected latency.
Timing and congestion are constraints, whereas wirelength, power and area are metrics to
optimize.

To compare with RePlAce, which has a different objective function, we treat the output of a
commercial EDA tool as ground truth. To perform this comparison, we fix the macro
placements generated by our method and by RePlAce, and allow the commercial EDA tool to
further optimize the standard cell placements with settings drawn from our production
workflow. We used the version of RePLAce provided in ref. *1, based on the version of the
code published on 9 January 2020. Except for the density threshold (where RePlAce
benefited from alower threshold than its default), we used the default settings and did not
use the timing-driven capability of RePlAce.

As shown in Table 1, our method outperforms RePlAce in generating placements that meet
design criteria. Although RePlAce is faster and runs in under an hour on a single Intel CPU of
3.7 GHz, the placements are generally of lower quality. Given the constraints imposed by the
underlying process technology node, placements will not be able to meet timing constraints
in the later stages of the design flow if WNS is considerably above 150 ps or if the horizontal
or vertical congestion is over 1%, rendering many RePlAce placements (blocks 1, 2, 3)
unusable. These results demonstrate that our approach is effective in generating high-

quality placements that meet design criteria.

Table 1 also shows the results for the manual baseline, which is the actual production design
of the previous TPU chip. This baseline was generated by the TPU's physical design team,
and involved many iterations of placement optimization, guided by feedback from a
commercial EDA tool over a period of several months. Both our method and human experts
consistently generate viable placements that meet timing and congestion requirements.

However, our method also outperforms or matches manual placements in area, power and

wirelength. Furthermore, our end-to-end learning-based approach takes far less time to

meet design criteria.

Conclusion

In this work, we propose an RL-based approach to chip floorplanning that enables domain
adaptation. The RL agent becomes better and faster at floorplanning optimization as it
places a greater number of chip netlists. We show that our method can generate chip
floorplans that are comparable or superior to human experts in under six hours, whereas
humans take months to produce acceptable floorplans for modern accelerators. Our
method has been used in production to design the next generation of Google TPU.

Methods

In the following, we provide details of the proposed methodologies.

Problem statement

In this work, we target the chip floorplanning problem, in which the objective is to map the
nodes of a netlist (a hypergraph describing the chip) onto a chip canvas (a bounded two-
dimensional space), so that final power, performance and area (PPA) is optimized. In this
section, we provide an overview of how we formulate the problem as an RL problem,
followed by a detailed description of the reward function, action and state representations,
policy architecture, and policy updates.

Overview of our approach
We take a deep RL approach to the chip floorplanning problem, in which an RL agent (policy
network) sequentially places the macros. Once all macros are placed, we use a force-

directed (FD) method'2326:27 o place clusters of standard cells, as shown in Fig. 1.

In this section, we define the reward r, state s, actions a, policy network architecture mg(als)
parameterized by 8, and finally the optimization method that we use to train those
parameters. In our setting, at the initial state, so, we have an empty chip canvas and an
unplaced netlist. At each step one macro is placed, and the final state, s, corresponds to a
completely placed netlist. Thus, Tis equal to the total number of macros in the netlist. At
each time step r, the agent begins in state s;, takes an action (a,), arrives at a new state (Sq1),
and receives a reward (r;) from the environment (0 for £ < T and negative proxy cost for £=T).

We define s, to be a concatenation of features representing the state at time ¢, including a
graph embedding of the netlist (including both placed and unplaced nodes), a node
embedding of the current macro to place, metadata about the netlist, and a mask
representing the feasibility of placing the current node onto each cell of the grid.

The action space is all valid placements of the tth macro, which is a function of the density
mask. Action a,is the cell placement of the tth macro predicted by the RL policy network.
Seqisthe next state, which includes an updated representation containing information
about the newly placed macro, an updated density mask and an embedding for the next
node to be placed. In our formulation, r¢is 0 for every time step except for the final, r7, where

itis aweighted sum of approximate wirelength, congestion and density.

Through repeated episodes (sequences of states, actions and rewards), the policy network
learns to take actions that will maximize cumulative reward. We use PPO?* to update the

parameters of the policy network, given the cumulative reward for each placement.

Detailed methodology

Our goal is to minimize PPA, subject to constraints on routing congestion and density. Our
true reward is the output of a commercial EDA tool, including wirelength, routing
congestion, density, power, timing and area. However, RL policies require 10,000s of
examples to learn effectively, so it is critical that the reward function be fast to evaluate,
ideally running in a few milliseconds. In order to be effective, these approximate reward
functions must also be positively correlated with the true reward. Therefore, acomponent
of our cost is wirelength, because it is not only much cheaper to evaluate, but also correlates

with power and performance (timing).

To combine multiple objectives into a single reward function that can be optimized, we take
the weighted sum of proxy wirelength, congestion and density, where the weights can be
used to explore the trade-off between these metrics. While we treat congestion as a soft
constraint (that is, lower congestion improves the reward function), we treat density as a
hard constraint, masking out actions (grid cells to place nodes onto) the density of which

exceeds the target density.

To keep the runtime per iteration small, we apply several approximations to the calculation

of the reward function:

(1) We group millions of standard cells into a few thousand clusters using hMETIS?2, a
partitioning technique based on the minimum cut objective. Once all macros are placed, we
use an FD method to place the standard cell clusters. Doing so enables us to generate an
approximate but fast standard cell placement that facilitates policy network optimization.

(2) We discretize the grid to a few thousand grid cells and place the centre of macros and

standard cell clusters onto the centre of the grid cells.

(3) When calculating wirelength, we make the simplifying assumption that all wires leaving a

standard cell cluster originate at the centre of the cluster.

(4) To calculate the routing congestion cost, we consider only the average congestion of the

top 10% most congested grid cells.

A chip netlist typically consists of hundreds of macros and millions of standard cells. Owing
to their negligible area, standard cells can be approximated as points with zero area,
allowing for analytic solvers to optimally place them with a small margin of error. Macros,
on the other hand, have much larger area and cannot be optimally placed with these same
analytic techniques. We chose to target macro placement, as itis a much more challenging
problem, which previously required human experts to iterate for months to generate a high-

quality placement.

Synthesis of the input netlist

We use a commercial tool to synthesize the netlist from RTL. Synthesis is physical-aware, in
the sense that it has access to the floorplan size and the locations of the input/output pins,
which were informed by inter- and intra-block-level information.

Selection of grid rows and columns

Given the dimensions of the chip canvas, there are many choices to discretize the two-
dimensional canvas into grid cells. This decision affects the difficulty of optimization and
the gquality of the final placement. We limit the maximum number of rows and columns to
128. We treat choosing the optimal number of rows and columns as a bin-packing problem
and rank different combinations of rows and columns by the amount of wasted space that
they incur. We use an average of 30 rows and columns in our experiments.

Selection of macro order
To select the order in which the macros are placed, we sort macros by descending size and
break ties using a topological sort. By placing larger macros first, we reduce the chance of

PP TRURIN I SO SN L 5 NN . S DU S SRR " R — N JE N

LMNEere DEINE NO 1€d5101€ PIACEITIETILI0T d HLET MdCTO. 1 Ne LOPOI0EICd] SOTL Cdn neip une poncy
network learn to place connected nodes close to one another. Another potential approach
would be to learn to jointly optimize the ordering of macros and their placement, making
the choice of which node to place next part of the action space. However, this enlarged
action space would considerably increase the complexity of the problem, and we found that

this heuristic worked in practice.

Clustering of standard cells

To quickly place standard cells to provide a signal to our RL policy, we first cluster millions of
standard cells into a few thousand clusters. There has been a large body of work on
clustering for chip netlists?>3#+23536.37.38 Aq has been suggested in the literature®®, such
clustering helps not only with reducing the problem size, but also helps to ‘prevent
mistakes’ (for example, prevents timing paths from being split apart). We also provide the
clustered netlist to each of the baseline methods with which we compare. To perform this
clustering, we employed a standard open-source library, h(METIS®, which is based on
multilevel hypergraph partitioning schemes with two important phases: (1) coarsening

phase, and 2) uncoarsening and refinement phase.

Generation of adjacency matrix

To convert the netlist hypergraph into an adjacency matrix that can be consumed by the
Edge-GNN encoder, we apply the following transformation. For each pair of nodes in the
clustered netlist (either macros or clusters of standard cells), we generate an edge in the
adjacency matrix with the following weight. If the register distance between the two nodes
isgreater than 4, then no edge is created. Otherwise, we apply an exponentially decaying
weight as the distance grows, starting with 1 if the distance is O and halved with each

additional unit of distance.

Placement of standard cells

To place standard cell clusters, we use an approach similar to classic FD methods*°. We
represent the netlist as a system of springs that apply force to each node, according to the
weight x distance formula, causing tightly connected nodes to be attracted to one another.
We also introduce a repulsive force between overlapping nodes to reduce placement
density. After applying all forces, we move nodes in the direction of their force vector. To

reduce oscillations, we set a maximum distance for each move.

Postprocessing
To prepare the placements for evaluation by acommercial EDA tool, we perform a simple
legalization step to snap macros to the nearest power grid. We then fix the macro

placements and use an EDA tool to place the standard cells and evaluate the placement.

Reward

Wirelength

Following the literature*0414243 we employ the half-perimeter wirelength (HPWL), the
most commonly used approximation for wirelength. HPWL is defined as the half-perimeter
of the bounding boxes for all nodes in the netlist. The HPWL for a given net (edge) { is:

HPWL(7) = (maxpe; {xs } — minge; {zs } + 1)

. 4
+ (maxpei {y; } — minge; {y, } + 1).)

Here xp and yp are the x and y coordinates of the end points of neti. The overall HPWL cost is
then calculated by taking the normalized sum of all half-perimeter bounding boxes, as
shown in equation (5). Here g({) is anormalization factor thatimproves the accuracy of the
estimate by increasing the wirelength cost as the number of nodes increases, where Npetjist is

the number of nets. We calculate the total HPWL as follows:

Noetlist

HPWL(netlist) = Y q(i)HPWL(i). 5)

=1

The wirelength also has the advantage of correlating with other important metrics, such as
power and timing. Although our method does not optimize directly for these other metrics,
itgenerates placements that meet design criteria with respect to power and timing (as

shown in Table1).

Routing congestion

We also followed convention in calculating proxy congestion**, using a simple deterministic
routing based on the locations of the driver and loads on the net. The routed net occupies a
certain portion of available routing resources (determined by the underlying
semiconductor fabrication technology) for each grid cell through which it passes. We keep
track of vertical and horizontal allocations in each grid cell separately. To smooth the
congestion estimate, we run 5 x 1 convolutional filters in both the vertical and horizontal
direction. After all nets are routed, we take the average of the top 10% congestion values,
drawing inspiration from the ABA10 metric in MAPLE**. The congestion cost in equation (2)

is the top 10% average congestion calculated by this process.

Density

We treat density as a hard constraint, disallowing the policy network from placing macros in
locations that would cause density to exceed the target (maxXgenge,) Or that would resultin
infeasible macro overlap. This approach has two benefits: (1) it reduces the number of
invalid placements generated by the policy network, and (2) it reduces the search space of
the optimization problem, making it more computationally tractable.

A feasible placement of a standard cell cluster must meet the following criterion: the density
of placed items in each grid cell must not exceed a given target density threshold
(mMaxdensity). We set this threshold to be 0.6 in our experiments to avoid over-utilization,
which would render placements unusable. To meet this constraint, during each RL step, we
calculate the current density mask, a binary m x n matrix representing grid cells onto which
we can place the centre of the current node without violating the density threshold. Before
selecting an action, we first take the dot product of the mask and the policy network output
and then sample from the resulting probability distribution over feasible locations. This
approach prevents the policy network from generating placements with overlapping
macros or dense standard cell areas. We also enable blockage-aware placements (such as

clock straps) by setting the density function of the blocked areasto 1.

Action representation

For policy optimization purposes, we convert the canvas into an m x n grid. Thus, for any
given state, the action space (or the output of the policy network) is the probability
distribution of placements of the current macro over the m * n grid. The action is then

sampled from this probability distribution.

State representation

Our state contains information about the adjacency matrix corresponding to the clustered
netlist, its node features (width, height, type), edge features (number of connections),
current node (macro) to be placed, and metadata of the netlist and the underlying
technology (for example, routing allocations, total number of wires, macros and standard
cell clusters). Next, we discuss how we process these features to learn effective

representations for the chip floorplanning problem.

Enabling transfer learning

To discover domain-adaptive architectures, we propose grounding the policy architecture

search in the supervised task of predicting the value of reward functions. We take this

approach because exploration would be far costlier in an RL setting, and the underlying
complexity of training a domain-adaptive policy network would be prohibitively high, as it
involves an immense state space encompassing all possible placements of all possible chips.
Furthermore, different netlists and grid sizes can have very different properties, including

differing numbers of nodes, macro sizes, netlist topologies and canvas widths and heights.

The intuition behind this approachis that a policy network architecture capable of
transferring placement optimization across chips should also be able to encode the state
associated with a new unseen chip into a meaningful signal at inference time. We therefore
propose training a neural network architecture capable of predicting reward on new
netlists, with the ultimate goal of using this architecture as the encoder layer of our policy

network.

To train this supervised model, we needed a large dataset of chip floorplans and their
corresponding reward labels. We therefore created a dataset of 10,000 chip floorplans
where the input is the state associated with a given floorplan and the label is the reward for
that floorplan (wirelength and congestion). We built this dataset by generating 2,000
floorplans for each of five TPU blocks. To collect diverse floorplans, we trained a vanilla
policy network with various congestion weights (ranging from O to 1) and random seeds,
and collected snapshots of floorplans throughout the course of policy training. An
untrained policy network starts off with random weights and the generated floorplans are of
low quality, but as the policy network trains, the quality of generated floorplans improves,

allowing us to gather a diverse dataset with floorplans of varying quality.

To train a supervised model capable of accurately predicting wirelength and congestion
labels and generalizing to unseen data, we developed a graph neural network architecture
(Edge-GNN) to embed information about the netlist. The role of Edge-GNN is to distill
information about the type and connectivity of a node into a low-dimensional vector
representation that can be used in downstream tasks. Some examples of such downstream
tasks are node classification®”, device placement®*®, link prediction*’ and design rule check

(DRC) violations prediction*®.

We create a vector representation of each node by first concatenating its features, including
node type, width, height, and x and y coordinates. We also pass node adjacency information
as input to our algorithm. We then repeatedly perform the following updates: (1) each edge
updates its representation by applying a fully connected network to an aggregated
representation of intermediate node embeddings, and (2) each node updatesits
representation by taking the mean of adjacent edge embeddings. The node and edge

updates are shown in equation (3).

Node embeddings are denoted by v;for1<i < N, where Nis the total number of macros and
standard cell clusters. The vector representations of the edge connecting nodes v; and v; is
represented as e;. Both edge (e;) and node (v;) embeddings are 32-dimensional. v; is
initialized by passing the node features (type, width, height, x, y) through a feed-forward
network. fc. is a 65 = 32 feed-forward network and wfj isalx=1weight corresponding to the
number of nets between adjacent nodes. Neighbours(v;) denotes the neighbours of v;. The

outputs of the algorithm are the node and edge embeddings.

Our supervised model consists of the following. (1) The graph neural network (Edge-GNN)
described earlier, which embeds information about node type and the netlist adjacency
matrix. (2) A fully connected feed-forward network that embeds netlist metadata, including
information about the underlying semiconductor technology (horizontal and vertical
routing capacity), the total number of nets (edges), macros, and standard cell clusters,
canvas size and number of rows and columns in the grid. (3) A fully connected feed-forward
network (the prediction layer) whose inputis a concatenation of the netlist adjacency

matrix and metadata embeddings, and whose output is the reward prediction. The netlist

AmabadAdime ic arantad har asahdeer n sadiand maane Fusarine amrha adoa AmahadAdimaes Tha

CIHHUCUUHIE Iy LISdlEUu DY dPPIYHEE d TeUULEu ST TUNTLLIUIT U LS SUge CHICUUIES. 11e
supervised model is trained via regression to minimize the weighted sum of the mean

squared loss of wirelength and congestion.

This supervised task allowed us to find the features and architecture necessary to generalize
reward prediction across netlists. To incorporate this architecture into our policy network,
we simply removed the prediction layer and then used the remaining network as the

encoder of the policy network, as shown in Fig. 2.

To handle different grid sizes corresponding to different choices of rows and columns, we
set the grid size to 128 x 128, and mask the unused L-shaped section for grid sizes smaller
than 128 rows and columns. To place a new test netlist at inference time, we load the pre-
trained weights of the policy network and apply it to the new netlist. We refer to placements
generated by a pre-trained policy network with no fine-tuning as zero-shot placements.
Such a placement can be generated in less than a second, because it requires only a single
inference step of the pre-trained policy network for each macro. We can further optimize
placement quality by fine-tuning the policy network, meaning that we have the option to
either use the pre-trained weights (which have learned a rich representation of the input
state) directly at inference or further fine-tune these weights to optimize for the properties
of a particular chip netlist.

Policy network architecture

Figure 1 depicts an overview of the policy network (modelled by mg in equation (1) and the
value network architecture that we developed for chip floorplanning. The input to these
networks is the adjacency matrix and node features corresponding to the netlist
hypergraph, the identity of the current node to be placed, and the metadata of the netlist
and the semiconductor technology. The netlist is passed through our graph neural network
architecture (Edge-GNN) as described earlier. Edge-GNN generates embeddings of (1) the
partially placed hypergraph and (2) the current node. We use a simple feed-forward network
to embed (3) the metadata. These three embedding vectors are then concatenated to form
the state embedding, which is passed to a feed-forward neural network. The output of the
feed-forward network is then fed into the policy network (composed of five deconvolutions,
batch normalization, and ReLU activation layers) to generate a probability distribution over
actions and passed to a value network (composed of a feed-forward network) to predict the
value of the input state.

Policy network update: training parameters 6
In equation (1), the objective is to train a policy network g that maximizes the expected
value (£) of the reward (R, z) over the policy network’s placement distribution. To optimize

the parameters of the policy network, we use PPO2* with a clipped objective as shown below:

L () — E,[min(r(8) A, clip(re(6),1 — &,1 + £) A,)],

where E; represents the expected value at timestep t, rz is the ratio of the new policy and the

old policy, and A; is the estimated advantage at timestep .

Experimental setup
To perform a fair comparison, we ensured that our method and all baseline methods had
access to the same inputs and the same evaluation settings. Extended Data Fig. 1 shows the

flow that we used to conduct the evaluations.

Once each method finishes placing the netlist, the macro locations are frozen and snapped
to the power grid. Next, the EDA tool performs standard cell placement. The settings for the
EDA tool are drawn directly from our production flow and thus we cannot share all details.

The final metrics in Table 1 are reported after PlaceOpt, meaning that global routing has

been performed by the EDA tool.

Clustering standard cells allowed our method to more effectively optimize the placement of
macros. We therefore gave RePlAce access to clustered standard cells and found thatits
performance also improved, so we reported results of RePlAce on the netlist with clustered
standard cells. Although RePlAce has a default density threshold of 1.0, we found that our
setting of 0.6 resulted in better performance, so that is what we used to report RePlAce
performance. In all other cases, we used the default settings and cost functions for RePlAce.
For reproducibility, we provide all architectural details and hyperparameter settings for our
RL algorithm in Extended Data Table 1, as well as for the FD method used to place standard
cellsin Extended Data Table 2.

The deconvolutions layers have a 3 x 3 kernel size with stride 2and 16, 8, 4, 2 and 1 filter
channels. To cluster the standard cells for each chip block, we used hMETIS?2, which
partitions millions of standard cells into thousands of clusters. The hyperparameters for
hMETIS are listed in Extended Data Table 3. For all other hMETIS hyperparameters, we
simply use the default settings (see the hMETIS manual*® for the values of these defaults and
for more detailed information about each hyperparameter). We note that we use a licensed
version of hMETIS but, to our knowledge, the same features are available in the open-source

version.

To avoid overfitting, we employ an early stopping mechanism that halts RL training once the
policy converges. More precisely, training stops when it has been two hours since the

evaluation return improved by at least 0.5% over the bestreturn so far.

Open-source benchmark: Ariane RISC-V

For the Ariane benchmark, we used the following open-source design>®
(https://github.com/pulp-platform/ariane) and mapped all logical memories to physical
memories of size 256 x 16, resulting in 133 macros. In Extended Data Fig. 4, we compare a
placement generated by our method trained from scratch and one that was generated in

zero-shot mode by a pre-trained policy.

Use in a production setting

Our method was used in the product tapeout of a recent Google TPU. We fully automated
the placement process through PlaceQOpt, at which point the design was sent to a third party
for post-placement optimization, including detailed routing, clock tree synthesis and post-
clock optimization. This is a standard practice for many hardware teams, and physical
designers spend months iterating with commercial EDA tools to produce designs that meet

the strict requirements to move to this next stage.

In the production flow, we use the same RL. method described in Table 1 and the same EDA
workflow to place standard cells. Although the RL placements were already comparable to
manual designs, we performed an additional fine-tuning step with simulated annealing (SA)
to further boost performance, which helped to improve macro orientation, as we do not
currently perform macro mirroring in RL. Adding this fine-tuning step improved wirelength
by an average of 1.07% (s.d. = 0.04%), slightly reduced timing (average 1.18 ns reduction in
TNS; s.d. = 2.4 ns) and negligibly affected congestion (less than 0.02% variation in vertical or
horizontal congestion in all cases). The resulting end-to-end runtime was 8 hon average.
Since that production launch, we have replaced SA in our production workflow with a
greedy postprocessing step that tunes the macro orientation in a few minutes, considerably

reducing our end-to-end runtime without degrading quality.

Impact of cost trade-offs

In Extended Data Table 4, we perform an ablation study to examine the impact of congestion
weight on the quality of post-PlaceOpt results (final guality of result from the commercial
EDA tool). As expected, increasing congestion weight improves both horizontal and vertical
congestion up to a point, but results in wirelength degradation, due to the inherent trade-off
between these two metrics. A congestion weight of 0.1 represents a ‘sweet spot’ in this case,
asrouting congestion is already low but wirelength has not yet overly degraded, which
together contribute to lower TNS and WNS as well.

Robustness to noise

To demonstrate the sensitivity of our method to noise, we performed eight runs of fine-
tuning on the Ariane RISC-V block, each time with a different random seed, and we report
the results (in proxy wirelength, congestion and density) in Extended Data Table 5. Our
evaluations demonstrate that the choice of random seed had negligible impact on all the
metrics, including proxy wirelength, congestion and density, with a standard deviation of

0.0022 in the overall cost across all runs.

Generalization versus training data

As we train on more chip blocks, we are able to speed up the fine-tuning process on new
blocks and generate higher-quality results faster. As discussed earlier, as we increase the
training set from 2 blocks (small dataset) to 5 blocks (medium dataset) and finally to 20
blocks (large dataset), the policy network generates better placements both at zero-shot
and after being fine-tuned for the same number of hours. Extended Data Fig. 3 shows the
placement cost on one test block (a TPU block notincluded in training) as the policy
network is being pre-trained. We can see that for the small training dataset, the policy
network quickly overfits to the training data and performance on the test data degrades,
whereas it takes longer for the policy network to overfit on the largest dataset, and the
policy network pre-trained on this larger dataset yields better results on the test data. This
plot suggests that as we expose the policy network to a greater variety of different training
blocks, it will take longer for the policy network to pre-train, but the policy network will
become less prone to overfitting and better at finding optimized placements for new unseen
blocks.

Insights and visualizations

Here we share some observations about our method’s behaviour that may provide insight
into the metrics in Table 1. One observation is that the RL policy tends to place macros on
the same datapath close to each other, which results in better timing performance. The
Edge-GNN encoder embeds the features of each node by iteratively averaging and applying
nonlinear transformations to the node’s k-hop neighbouring nodes and edges, where kis the
number of iterations applied. Therefore, one hypothesis is that the representation of nodes
inagiven datapath are similar to one another, causing our policy network to generate
similar predictions about where they should be placed on the canvas. This naturally results
innodes in the same datapath being placed near to one another, improving timing
performance.

Another observation is that our policy learns to reserve sufficient area for the subsequent
placement of standard cells, as this effectively optimizes its reward function. Even at zero-
shot (meaning that we run inference on our policy network in less than one second), our
method already exhibits this behaviour, as shown in Extended Data Fig. 4.

Extended Data Fig. 5 juxtaposes a placement generated by a human physical designer (on
the left) with that of our method (on the right) for a recent TPU block. The white area shows
the macro placements and the green area shows the standard cell placements. Our method
creates donut-shaped placements of macros surrounding standard cells, which resultsin a

reduction in the total wirelength. These placement images are blurred to preserve

confidentiality.

Comparing with simulated annealing

In the main text, we compare our method with two baselines: the academic state-of-the-art
RePlAce and human expert placements. In this section, we provide an additional
comparison with SA. To generate results for our method, we use the same procedure as in
Table 1, pre-training a policy on the largest dataset (20 TPU blocks) and then fine-tuning it

on the same five unseen test blocks.

SAis known to be a powerful, but slow, optimization method. However, similar to RL, SAis
capable of optimizing arbitrary non-differentiable cost functions. To show the relative
sample efficiency of RL, we ran experiments in which we replaced it with an SA optimizer.
Our SA algorithm works as follows: in each SA iteration (step), we perform 2N macro actions
(where Nis the number of macros). A macro action takes one of three forms: swap, shiftand
mirror. Swap selects two macros at random and swaps their locations, if feasible. Shift
selects amacro at random and shifts that macro to a neighbouring location (left, right, up or
down). Mirror flips a macro at random across the x axis, across the y axis, or across both the x
and y axes. We apply a uniform probability over the three move types, meaning that ateach
time step there is a 1/3 chance of swapping, a 1/3 chance of shifting and a 1/3 chance of
flipping. After N macro actions, we use an FD method to place clusters of standard cells
while keeping macro locations fixed, just as we do in our RL method. For each macro action
or FD action, the new state is accepted if it leads to a lower cost. Otherwise, the new state is
accepted with a probability of explpreveest — NeWeose)/f], Where € = fimaeXpi-10Z[(fmax/Tmin)
(step/steps)1}. Here prevg,s refers to the cost at the previous iteration; new,,s refers to the
cost at the current iteration; tis the temperature, which controls the willingness of the
algorithm to acceptlocal degradations in performance, allowing for exploration; and fyax

and fpjp correspond to the maximum and minimum allowable temperature, respectively.

To make comparisons fair, we ran 80 SA experiments sweeping different hyperparameters,
including maximum temperature ({107°,3 x107%,5x107%, 7x107°,107%,2x107% 5 x107#,
1073}), maximum SA episode length ({5 x 10%,10%}) and seed (five different random seeds),
and report the best results in terms of proxy wirelength and congestion costs in Extended
Data Table 6. Each of the 80 SA workers runs an experiment corresponding to one particular
choice of the five random seeds, two episode lengths and eight maximum temperatures.

The SA baseline uses more compute (80 SA workers x 2 CPUs per SA worker x 18 h of
runtime = 2,880 CPU-hours) than our method (16 RL workers x (1GPU + 10 CPUs per RL
worker) x 6 h=1,920 CPU-hours). Here, we treat the cost of one GPU as roughly 10 times that
of a CPU. If we had stopped SA after 12 h (and if we did not use early stopping in RL), then the
two methods would have used equivalent compute, but the SA results after 12 h were not
even close to competitive. Fven with additional time (18 h of SA versus 6 hof RL), SA
struggles to produce high-quality placements compared to our approach, generating

placements with 14.4% higher wirelength and 24.1% higher congestion on average.

Implications for a broader class of problems

We believe that the proposed method has broader implications for other stages of chip
design and other placement optimization tasks. For example, our zero-shot mode allows
design space explorations through rapid evaluation of computer architectures grounded in
the physical reality. Automating and optimizing architectural exploration and its interface
with physical design can not only further accelerate the chip design process, butalso lead to
additional improvements in critical hardware metrics, such as power and timing.

Furthermore, this method is applicable to a broad class of placement optimization

problems outside of chip design, such as city planning (for example, traffic light placement),
compiler optimization (for example, datacentre resource allocation) and environmental
engineering (for example, dam placement).

Related work

Chip floorplanning is a longstanding challenge, requiring multi-objective optimization over
circuits of ever-growing complexity. Since the 1960s, many approaches have been
proposed, so far falling into three broad categories: (1) partitioning-based methods, (2)
stochastic/hill-climbing methods and (3) analytic solvers.

Starting in the 1960s, industry and academic laboratories used partitioning-based**~" and
resistive-network”>? approaches to chip floorplanning, as well as resistive-network based
methods®2. These methods are characterized by a divide-and-conquer approach; the
netlist and the chip canvas are recursively partitioned until sufficiently small sub-problems
emerge, at which point the sub-netlists are placed onto the sub-regions using optimal
solvers. Such approaches are quite fast to execute and their hierarchical nature allows them
to scale to arbitrarily large netlists. However, by optimizing each sub-problem in isolation,
partitioning-based methods sacrifice quality of the global solution, especially routing
congestion. Furthermore, a poor early partition may result in an unsalvageable end

placement.

In the 1980s, analytic approaches emerged but were quickly overtaken by stochastic/hill-
climbing algorithms, particularly SA®”5, $A is named for its analogy to metallurgy, in which
metals are first heated and then gradually cooled to induce, or anneal, energy-optimal
crystalline surfaces. SA applies random perturbations to a given placement (for example,
shifts, swaps or mirroring of macros) and then measures their effect on the objective
function (for example, HPWL). If the perturbation is an improvement, it is applied; if not, it is
still applied with some probability, referred to as temperature. Temperature is initialized to
a particular value and is then gradually annealed to a lower value. Although SA generates
high-quality solutions, it is very slow and difficult to parallelize, thereby failing to scale to
the increasingly large and complex circuits of the 1990s and beyond.

5,53

The 1990s-2000s were characterized by multi-level partitioning methods"--, as well as the

21011252627 and nonlinear

resurgence of analytic techniques®, such as FD methods
optimizers®>*¢575% The renewed success of quadratic methods was due in part to
algorithmic advances but also to the large size of modern circuits (10-100 million nodes),
which justified approximating the placement problem as that of placing nodes with zero
area. However, despite the computational efficiency of quadratic methods, they are
generally less reliable and produce lower-quality solutions than their nonlinear

counterparts.

Nonlinear optimization approximates cost using smooth mathematical functions, such as
the log-sum-exp®® and weighted-average 65 models for wirelength, as well as Gaussian®® and
Helmholtz models for density. These functions are then combined into a single objective
function using a Lagrange penalty or relaxation. Owing to the higher complexity of these
models, it is necessary to take a hierarchical approach, placing clusters rather than

individual nodes, an approximation that degrades the quality of the placement.

Thelast decade has seen the rise of modern analytic techniques, including more advanced
quadratic methods!2++61.6262 and more recently electrostatics-based methods such as
ePlace'® and RePlAce!*. Modelling netlist placement as an electrostatic system, ePlace’®
proposed a new formulation of the density penalty in which each node (macro or standard
cell) of the netlist is analogous to a positively charged particle whose area corresponds to its
electric charge. In this setting, nodes repel each other with a force proportional to their
charge (area), and the density function and gradient correspond to the system’s potential

energy. Variations of this electrostatics-based approach have been proposed to address

standard cell placement!? and mixed-size placement®+95 RePlAce!* is a recent state-of-the-
art mixed-size placement technique that further optimizes ePlace’s density function by
introducing a local density function that tailors the penalty factor for each individual bin
size. DREAMPlace®® further speeds up RePlAce by taking a deep-learning-based approach to
optimize the placement and leveraging GPU acceleration. However, the focus of
DREAMPIlace is standard cell placement optimization, rather than macro placement, and
reports comparable quality to RePlAce. Therefore, we compare the performance of our
method against RePlAce.

There are numerous opportunities for machine learning to advance physical design®79569,
Recent work’® proposes training a model to predict the number of DRC violations for a
given macro placement. DRCs are rules that ensure that the placed and routed netlist
adheres to tape-out requirements. To generate macro placements with fewer DRCs, ref. 7°
uses the predictions from this trained model as the evaluation function in simulated
annealing. Although this work represents an interesting direction, it reports results on
netlists with no more than six macros, far fewer than any modern block, and does not
consider the effect of place and route optimizations, which can dramatically alter the
number of DRCs. Furthermore, although adhering to the DRC criteria is a necessary
condition, the primary objective of macro placement is to optimize for wirelength, timing
(for example, WNS and TNS), power and area, and this work does not even consider these
metrics.

To address this classic problem, we propose a new category of approach: an end-to-end
learning-based method. This new approach is most closely related to analytic solvers,
particularly nonlinear ones, in that all of these methods optimize an objective function via
gradientupdates. However, our approach differs from prior approaches in its ability to learn
from past experience to generate higher-quality placements on new chips. Unlike existing
methods that optimize the placement for each new chip from scratch, our work leverages
knowledge gained from placing prior chips to become better over time. In addition, our
method enables direct optimization of the target metrics, such as wirelength, density and
congestion, without having to define convex approximations of those functions, as is done
in other approaches™'*. Not only does our formulation make it easy to incorporate new cost
functions as they become available, but it also allows us to weight their relative importance
according to the needs of a given chip block (for example, timing-critical or power-

constrained).

Domain adaptation is the problem of training policies that can learn across multiple
experiences and transfer the acquired knowledge to perform better on new unseen
examples. In the context of chip floorplanning, domain adaptation involves training a policy
across a set of chip netlists and then applying that trained policy to a new unseen netlist. The
use of deep learning for combinatorial optimization is an area of growing interest, including
approaches to the Travelling Salesman problem?’!, neural architecture search’> and model
parallelism?223. More recently, there has been work on domain adaptation for compiler
optimization*®7>™7 and the Maximum Cut problem’®. Our approach not only leverages
past experience to reduce training time, but also produces higher-quality results when
exposed to more instances of the problems. To our knowledge, our method is the first deep
RL approach used in production to solve a combinatorial optimization problem, namely, in
the design of the latest generation of Google TPU.

Data availability

The data supporting the findings of this study are available within the paper and the
Extended Data.

Code availability

Tlnandrsrrndsn cnmamnin tlencn dabn do e nilall o Fanne #len ;;sssenme e [EVIp R, TR

LHE COUE USEU LU BEHETCLE LITESE UdLd 15 dVdlduIie 1TUl e COlrespunluiig duuiors upun

reasonable request.

References
1. Markov, I.L., Hu,]. & Kim, M. Progress and challenges in VLSI placement research. Proc.
IEFE103,1985-2003 (2015).

Article Google Scholar

2. Tang, M. & Yao, X. Amemetic algorithm for VLSI floorplanning. /EEE Trans. Syst. Man
Cybern. B37, 62-69 (2007).

Article Google Scholar

3. Breuer, M. A. A class of min-cut placement algorithms. In Proc. 14th Design Automation
Conference (DAC1977) 284-290 (IEEE, 1977).

4. Fiduccia, C. M. & Mattheyses, R. M. A linear-time heuristic for improving network
partitions. In 19th Design Automation Conference 175-181 (IEEE, 1982).

5. Roy,]. A.,Papa, D. A. & Markov, 1. L. in Modern Circuit Placement (eds Nam, G.-]. & Cong,].
J.)97-133 (Springer, 2007).

6. Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. Optimization by simulated annealing. Science
220, 671-680 (1983).

ADS MathSciNet CAS Article Google Scholar

7. Sechen, C. M. & Sangiovanni-Vincentelli, A. L. TimberWolf3.2: a new standard cell
placement and global routing package. In 23rd ACM/IEEE Design Automation Conference
432-439 (IEEE, 1986).

8. Sarrafzadeh, M., Wang, M. & Yang, X. in Modern Placement Techniques 57-89 (Springer,
2003).

9, Luo, T. & Pan, D. Z. DPlace2.0: astable and efficient analytical placement based on
diffusion. In 2008 Asia and South Pacific Design Automation Conference 346-351 (IEEE,
2008).

10. Hu, B. & Marek-Sadowska, M. Multilevel fixed-point-addition-based VLSI placement.
[EEF Trans. Comput. Aided Des. Integrated Circ. Syst. 24, 1188-1203 (2005).

Article Google Scholar

11. Viswanathan, N., Pan, M. & Chu, C. in Modern Circuit Placement (eds Nam, G.-]. & Cong, J.
J.)193-228 (Springer, 2007).

12. Kim, M., Lee, D., Markov, I. L. & Sim, P. L. An effective placement algorithm. [EEE Trans.
Comput. Aided Des. Integrated Circ. Syst. 31, 50-60 (2012).

Article Google Scholar

13. Lu,]J. etal. ePlace: electrostatics-based placement using fast Fourier transform and
Nesterov’s Method. ACM Trans. Des. Autom. Electron. Syst. 20,17 (2015).

ADS Article Google Scholar

14. Cheng, C.-K.,Kahng, A. B., Kang, I. & Wang, L. RePlAce: advancing solution quality and

routam |1Ty valigationin glODal placement. IEEE Irans. Lompur. Atded 1es. mfegrarea
Circ. Syst. 38,1717-1730 (2019).

Article Google Scholar

15. Silver, D. et al. Mastering the game of Go without human knowledge. Nature 550, 354~
359 (2017).

ADS CAS Article Google Scholar

16. Aslam, B., Amjad, F. & Zou, C. C. Optimal roadside units placement in urban areas for
vehicular networks. In 2012 [EEF Symposium on Computers and Communications (ISCC)
000423-000429 (IEEE, 2012).

17. Medlock,]. & Galvani, A. P. Optimizing influenza vaccine distribution. Science 325,1705-
1708 (2009).

ADS CAS Article Google Scholar

18. Cherniak, C., Mokhtarzada, Z., Rodriguez-Esteban, R. & Changizi, K. Global
optimization of cerebral cortex layout. Proc. Natl Acad. Sci. USA101,1081-1086 (2004).

ADS CAS Article Google Scholar

19. Langford,). & Zhang, T. The Epoch-Greedy algorithm for multi-armed bandits with side
information. In Advances in Neural Information Processing Systems Vol. 20, 817-824
(2008).

20. Usunier, N., Synnaeve, G., Lin, Z. & Chintala, 5. Episodic exploration for deep
deterministic policies: an application to starcraft micromanagement tasks. In Proc.
International Conference on Learning Representations (2017).

21. Bello, L., Pham, H., Le, Q. V., Norouzi, M. & Bengio, . Neural combinatorial optimization

with reinforcement learning. Preprint at https://arxiv.org/abs/1611.09940 (2016).

22. Mirhoseini, A. et al. Device placement optimization with reinforcement learning. In
Proc. International Conference on Machine Learning 2430-2439 (PMLR, 2017).

23. Mirhoseini, A. et al. A hierarchical model for device placement. In Proc. International

Conference on Learning Representations (2018).

24. Schulman,]., Wolski, F., Dhariwal, P., Radford, A. & Klimov, O. Proximal policy
optimization algorithms. Preprint at https://arxiv.org/abs/1707.06347 (2017).

25. Obermeier, B., Ranke, H. & Johannes, F. M. Kraftwerk: a versatile placement approach. In
Proc. 2005 International Symposium on Physical Design 242-244 (ACM, 2005).

26. Spindler, P., Schlichtmann, U. & Johannes, F. M. Kraftwerk2 - a fast force-directed
quadratic placement approach using an accurate net model. JEEE Trans. Comput. Aided
Des. integrated Circ. Syst. 27,1398-1411 (2008).

Article Google Scholar

27. Viswanathan, N. et al. RQL: global placement via relaxed quadratic spreading and
linearization. In Proc. Design Automation Conference 453-458 (ACM/IEEE, 2007).

28. loffe, S. & Szegedy, C. Batch normalization: accelerating deep network training by

rednrine intarnal covariare <hifr In Proc 32nd Infernarinnal Canference nn Machine

29,

30.

3L

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

A g B R R LA M T LR IR R R RS F e e B LR ELE LR LR L R E L el R B T L T LT R

learning 448-456 (JMLR, 2015).

Nair, V. & Hinton, G. k. Rectified linear units improve restricted Boltzmann machines. In

Proc. International Conference on Machine Learning 807-814 (Omnipress, 2010).

Zaruba, F. & Benini, L. The cost of application-class processing: energy and
performance analysis of a Linux-ready 1.7-GHz 64-Bit RISC-V core in 22-nm FDSOI
technology. [EEE Trans. Very Large Scale Integr. VLSI Syst. 27,2629-2640 (2019).

Article Google Scholar

RePlAce software - the OpenROAD project https://github.com/The-OpenROAD-
Project/RePlAce (2020).

Karypis, G. & Kumar, V. Hmetis: a hypergraph partitioning package
http://glaros.dtc.umn.edu/gkhome/metis/hmetis/overview (1998).

Alpert, C.]J., Hagen, L. W. & Kahng, A. B. A hybrid multilevel/genetic approach for circuit
partitioning. In Prac. APCCAS'96 - Asia Pacific Conference on 1012 Circuits and Systems
298-301(IEEE, 1996).

Caldwell, A. k., Kahng, A. B. & Markov, I. L. Improved algorithms for hypergraph 1014
bipartitioning. In Proc. 2000 Design Automation Conference 661-666 (IEEE, 2000).

Chen, H. et al. An algebraic multigrid solver for analytical placement with layout 1017
based clustering. In Proc. 40th annual Design Automation Conference 794-799 (ACM,
2003);10.1145/775832.776034.

Alpert, C.,Kahng, A., Nam, G.-]., Reda, S. & Villarrubia, P. A semi-persistent clustering
technique for visi circuit placement. In Proc. 2005 International Symposium an Physical
Design,200-207 (ACM, 2005).

Fogaca, M., Kahng, A. B, Reis, R. & Wang, L. Finding placement-relevant clusters with
fast modularity-based clustering. In Proc. 24th Asia and South Pacific Design Automation
Conference 569-576 (ACM, 2019); https://doi.org/10.1145/3287624.3287676.

Fogaca, M. et al. On the superiority of modularity-based clustering for deter mining
placement-relevant clusters. Integration 74, 32-44 (2020).

Article Google Scholar

Kahng, A. B. Futures for partitioning in physical design (tutorial). In Proc. 1998
International Symposium on Physical Design 190-193 (ACM, 1998);
https:/doi.org/10.1145/274535.274563.

Shahookar, K. & Mazumder, P. VLSI cell placement techniques. ACM Comput. Surv. 23,
143-220 (1991).

Article Google Scholar

Caldwell, A. E., Kahng, A. B., Mantik, S., Markov, I. L. & Zelikovsky, A. On wirelength
estimations for row-based placement. JEEE Trans. Comput. Aided Des. Integrated Circ.
Syst. 18,1265-1278 (1999).

Article Google Scholar

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Kahng, A. B. & Xu, X. Accurate pseudo-constructive wirelength and congestion
estimation. In Proc. 2003 International Workshop on System-Level Interconnect
Prediction 61-68 (ACM, 2003); https://doi.org/10.1145/639929.639942.

Kahng, A. B. & Reda, S. A tale of two nets: studies of wirelength progression in physical
design. In Proc. 2006 International Workshop on System-Level Interconnect Prediction
[17-24 (ACM, 2006); https://doi.org/10.1145/1117278.1117282.

Kim, M.-C., Viswanathan, N., Alpert, C.]J., Markov, I. L. & Ramji, S. MAPLE: Multilevel
Adaptive Placement for Mixed-Size Designs. In Proc. 2012 ACM International
Symposium on International Symposium on Physical Design193-200 (ACM, 2012).

Nazi, A., Hang, W., Goldie, A., Ravi, S. & Mirhoseini, A. GAP: generalizable approximate
graph partitioning framework. In International Conference on Learning Representations
Waorkshop (2019).

Zhou, Y. et al. GDP: generalized device placement for dataflow graphs. Preprint at
https://arxiv.org/abs/1910.01578 (2019).

Zhang, M. & Chen, Y. Link prediction based on graph neural networks. In Proc.
International Conference on Neural Information Processing 5171-5181 (Curran
Associates Inc., 2018).

Xie, Z. et al. RouteNet: routability prediction for mixed-size designs using
convolutional neural network. In 2018 [EEF/ACM International Conference on Computer-
Aided Design (ICCAD) 1-8 (IEEE, 2018).

hMETIS - hypergraph and circuit partitioning manual
http://glaros.dtc.umn.edu/gkhome/metis/hmetis/download.

Dunlop, A. E. &Kernighan, B. W. A procedure for placement of standard-cell VLSI
circuits. [EEE Trans. Comput. Aided Des. Integrated Circ. Syst. 4, 92-98 (1985).

Article Google Scholar

Cheng C. K. & Kuh. E. S. Module placement based on resistive network optimization.
IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 3, 218-225 (1984).

Article Google Scholar

Tsay,R.-S., Kuh, E. & Hsu, C.-P. Proud: a fast sea-of-gates placement algorithm. In Proc.
Design Automation Conference 1988, 318-323 (IEEE, 1988).

Agnihotri, A., Ono, S. & Madden, P. Recursive bisection placement: Feng Shui 5.0
implementation details. In Proc. International Symposium on Physical Design 230-232
(ACM, 2005).

Alpert, C. et al. Analytical engines are unnecessary in top-down partitioning based
placement. VLS/ Des. 10, 99-116 (2002).

Article Google Scholar

Kahng, A. B., Reda, S. & Wang, Q. Architecture and details of a high quality, large-scale
analytical placer. In [EEE/ACM International Conference on Computer-Aided Design 2005
891-898 (IEEE, 2005).

56.

57.

58.

59.

60.

6l.

62.

63.

64.

65.

66.

67.

68.

Kahng, A. B. & Wang, Q. An analytic placer for mixed-size placement and timing.driven
placement. In J[EEE/ACM International Conference on Computer Aided Design 2004 565
572 (IEEE, 2004).

Kahng, A. B. & Wang, Q. Implementation and extensibility of an analytic placer. [EEE
Trans. Comput. Aided Des. Integrated Circ. Syst. 24,734-747 (2005).

Article Google Scholar

Chen, T.-C., Jiang, Z.-W., Hsu, T.-C., Chen, H.-C. & Chang, Y.-W. A High-quality mixed-size
analytical placer considering preplaced blocks and density constraints. In Proc. 2006
TEEE/ACM International Conference on Computer-Aided Design 187-192 (ACM, 2006).

Naylor, W., Donelly, R. & Sha, L. Non-linear optimization system and method for wire
length and delay optimization for an automatic electric circuit placer. US Patent
US6301693B1(2001).

Chen, T.,Jiang, Z.,Hsu, T., Chen, H. & Chang, Y. NTUplace3: an analytical placer for
large-scale mixed-size designs with preplaced blocks and density constraints. [EEE
Trans. Comput. Aided Des. Integrated Circ. Syst. 27,1228-1240 (2008).

Article Google Scholar

Kim, M.-C. & Markov, I. L. ComPLx: a competitive primal-dual Lagrange optimization
for global placement. In Design Automation Conference 2012 747- 755 (ACM, 2012).

Brenner, U., Struzyna, M. & Vygen, J. BonnPlace: placement of leading-edge chips by
advanced combinatorial algorithms. Trans. Comp.-Aided Des. Integ.Cir. Sys. 27,1607-
1620 (2008).

Article Google Scholar

Lin, T., Chu, C., Shinnerl, J. R., Bustany, |. & Nedelchev, I. POLAR: placement based on
novel rough legalization and refinement. In Prac. International Conference on
Computer-Aided Design 357-362 (IEEE, 2013).

Lu, J. et al. ePlace-MS: electrostatics-based placement for mixed-size circuits. [EEF
Trans. Comput. Aided Des. Integrated Circ. Syst. 34, 685-698 (2015).

Article Google Scholar

Lu,J., Zhuang, H., Kang, 1., Chen, P. & Cheng, C.-K. Eplace-3d: electrostatics based
placement for 3d-ics. In /nternational Symposium on Physical Design 11-18 (ACM, 2016).

Lin, Y. et al. DREAMPlace: deep learning toolkit-enabled GPU acceleration for modern
VLSI placement. In Design Automation Conference 1-6 (ACM/IEEE, 2019).

Kahng, A. B. Machine learning applications in physical design: recent results and
directions. In Proc. 2018 International Symposium on Physical Design 68-73 (ACM,
2018); https://doi.org/10.1145/3177540.3177554.

Kahng, A. B. Reducing time and effortin icimplementation: a roadmap of challenges
and solutions. In Proc. 55th Annual Design Automation Conference (ACM, 2018);
https://doi.org/10.1145/3195970.3199854.

69. Ajayi, T. etal. Toward an open-source digital flow: first learnings from the openroad
project. In Proc. 56th Annual Design Automation Conference 2019 (ACM, 2019);
https://doi.org/10.1145/3316781.3326334.

70. Huang, Y. etal. Routability-driven macro placement with embedded CNN-based
prediction model. In Design, Automation & Test in Europe Conference & Exhibition 180-
185 (IEEE, 2019).

71. Khalil, E., Dai, H., Zhang, Y., Dilkina, B. & Song, L. Learning combinatorial optimization
algorithms over graphs. Adv. Neural inf. Process Syst. 30, 6348-6358 (2017).

Google Scholar

72. Zoph, B. & Le, Q. V. Neural architecture search with reinforcement learning. In Proc.

International Conference on Learning Representations (2017).

73. Addanki, R., Venkatakrishnan, S. B., Gupta, S., Mao, H. & Alizadeh, M. Learning
generalizable device placement algorithms for distributed machine learning. Adv.
Neural Inf. Process Syst. 32, 3981-3991 (2019).

Google Scholar

74. Paliwal, A. et al. Reinforced genetic algorithm learning for optimizing computation

graphs. In Proc. International Conference an Learning Representations (2020).

75. Zhou, Y. et al. Transferable graph optimizers for ML compilers. Prepint at
https://arxiv.org/abs/2010.12438 (2021).

76. Barrett, T.D., Clements, W. R., Foerster,]. N. & Lvovsky, A. I. Exploratory combinatorial
optimization with reinforcement learning. Preprint at
https://arxiv.org/abs/1909.04063 (2020).

77. Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional
networks. Prepint at https://arxiv.org/abs/1609.02907 (2016).

Download references ¥

Acknowledgements

This project was a collaboration between Google Brain and the Google Chip
Implementation and Infrastructure (CI2) Team. We thank M. Bellemare, C. Young, E. Chi, C.
Stratakos, S. Roy, A. Yazdanbakhsh, N. Myung-Chul Kim, 5. Agarwal, B. Li, S. Bae, A. Babu, M.
Abadi, A. Salek, 5. Bengio and D. Patterson for their help and support.

Author information

These authors contributed equally: Azalia Mirhoseini, Anna Goldie

Affiliations
Google Research, Brain Team, Google, Mountain View, CA, USA
Azalia Mirhoseini, Anna Goldie, Joe Wenjie Jiang, Ebrahim Songhori, Shen Wang, Eric

Johnson, Azade Nazi, Quoc V. Le, James Laudon & Jeff Dean

Google Chip Implementation and Infrastructure (CI2) Team, Google, Sunnyvale, CA, USA
Mustafa Yazgan, Young-Joon Lee, Omkar Pathak, Jiwoo Pak, Andy Tong, Kavya

Srinivasa, Emre Tuncer, Richard Ho & Roger Carpenter

Computer Science Department, Stanford University, Stanford, CA, USA
Anna Goldie & William Hang

Contributions

A.G. and A.M. are co-first authors and the order of the names was determined by coin flip.
M.Y., JW.J., E.S., S.W. and Y.-].L. were major contributors to this work. The following authors
contributed to the overall evaluation and provided insights on physical design: E.]., O.P.,
AN, J.P., AT, K.S., W.H. and E.T. The following authors managed and advised on the project:
QV.L.,]JL,RH,RC.and].D.

Corresponding authors

Correspondence to Azalia Mirhoseini or Anna Goldie.

Ethics declarations

Competing interests
The following US patents are related to this work: ‘Generating integrated circuit floorplans
using neural networks’ (granted as US10699043) and ‘Domain adaptive reinforcement

learning approach to macro placement’ (filed).

Additional information

Peer review information Nature thanks Jakob Foerster and the other, anonymous,

reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Evaluation workflow for producing the results in Table 1.
We allow each method access to the same clustered netlist hypergraph. We use the same
hyperparameters (to the extent possible) in all the methods. Once the placement is
completed by each method (this includes the legalization step for RePlAce), we snap the
macros to the power grids, freeze the macro locations and use a commercial EDA tool to
place the standard cells and report the final results.

Extended Data Fig. 2 Zero-shot performance of Edge-GNN versus GCN (graph
convolutional neural network)77.

The agent with an Edge-GNN architecture is more robust to over-fitting and yields higher-
quality results, as measured by average zero-shot performance on the test blocks shownin
Extended Data Fig. 1.

Extended Data Fig. 3 Generalization performance as a function of pre-training
dataset size.

We pre-train the policy network on three different training datasets (the small dataset with 2
blocks is a subset of the medium one with 5 blocks, and the medium dataset is a subset of the
large one with 20 blocks). For each policy, at various snapshots during pre-training we
reportits inference performance on an unseen test block. As the dataset size increases, both
the quality of generated placements on the test block and the generalization performance
of the policy improve. The policy trained on the largest dataset is most robust to over-

fitting.

Extended Data Fig. 4 Visualization of Ariane placements.

Left, zero-shot placements from the pre-trained policy; right, placements from the fine-
tuned policy. The zero-shot placements are generated at inference time on a previously
unseen chip. The pre-trained policy network (with no fine-tuning) reserves a convex hull in

tha rantra nf tha ranvacin whicrh erandard callc fan ha nlarad a heahavinnr thar radncec

LI LI L U L LU Y G 1 TR LU UG U L LD LU UL PO, O DL U Y UL LU S L

wirelength and that emerges only after many hours of fine-tuning in the policy trained from

scratch.

Extended Data Fig. 5 Visualization of areal TPU chip.

Human expert placements are shown on the left and results from our approach are shown
on the right. The white area represents macros and the green area represents standard cells.
The figures are intentionally blurred because the designs are proprietary. The wirelength for
the human expert design is 57.07 m, whereas ours is 55.42 m. Furthermore, our method

achieves these results in 6 h, whereas the manual baseline took several weeks.

Extended Data Table 1 Hyperparameters used for fine-tuning the RL agent

Full size table ?

Extended Data Table 2 Hyperparameters used for the FD algorithm that places
standard cell clusters

Full size table ?

Extended Data Table 3 Hyperparameters used to generate standard cell clusters
with hMETIS*?

Full size table >

Extended Data Table 4 Effect of different cost trade-offs on the post-PlaceOpt
performance of Block1in Table 1

Full size table ?

Extended Data Table 5 Sensitivity of results to the choice of random seed, as
measured on a Ariane RISC-V block

Full size table »

Extended Data Table 6 Performance of our method compared to SA

Full size table ?

Rights and permissions

Reprints and Permissions

About this article

Cite this article
Check for Mirhoseini, A., Goldie, A., Yazgan, M. et al. A graph placement methodology for fast chip
updates design. Nature 594, 207-212 (2021). https;//doi.org/10.1038/541586-021-03544-w

Download citation ¥

Received Accepted Published
03 November 2020 13 April 2021 09 June 2021

Issue Date
10 June 2021

Dol
https://doi.org/10.1038/541586-021-03544-w

Share this article

Anyone you share the following link with will be able to read this content:

Get shareable link

Provided by the Springer Nature SharedIt content-sharing initiative

Subjects

Computational science Electrical and electronic engineering

Further reading

Al system outperforms humans in designing floorplans for microchips

Andrew B. Kahng
Nature (2021)

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If
you find something abusive or that does not comply with our terms or guidelines please flag

itasinappropriate.

0 Comments Nature & Disqus' Privacy Policy . Login
0 Recommend m Sort by Newest

Start the discussion...

LOG IN WITH OR SIGN UP WITH DISQUS @

0 o o @ Email

Password

Please aceess our Privaey Policy to | what personal data Disqus collects and your choices
about how it is used. All users of our service are also subject to our Terms of Service.

B4 subscribe © Add Disqus to your site 4k Do Not Sell My Data DISQUS

Nature | ISSN 1476-4687 (online)

l‘lthllI'@pOleO]lO About us Press releases Press office Contact us Ny o

Discover content Publishing policies Author & Researcher services Libraries & institutions

ature portfolio po 5 S ibranan service & tools
Articles by subject Open access Research data Librarian portal
Nano Language editing Open research
Protocol Exchange Scientific editing Recommend to library
Nature Index Nature Masterclasses

Nature Research Academies

Advertising & partnerships Career development Regional websites Legal & Privacy

Advertising Nature C. 5 Nature Africa Privacy Policy
Partnerships & Services Mature Conferences Nature China Use of cookies
Media kits Mature events Nature India Manage cookies/Do not sell my data
Branded content Nature ltaly Legal notice
Nature Japan Accessibility statement
Nature a Terms & Conditions

Nature Middle East California Privacy Statement

SPRINGER NATURE

